Big data and biomarker design
An ever-increasing amount of data is available in cancer research, much of it not yet fully used, provided by the different ‘omics’ technologies (genomics, radiomics, proteomics, etc.). cancer types for diagnosis, therapy planning, response assessment and follow-up. We study the properties of current quantifiers of tumor properties (such as heterogeneity or morphological features) to determine which can be surrogates of the disease status. We also define new properties based on mathematical models that could be used as prognostic and response biomarkers. We further study how to combine the biomarkers into more complex prognostic and predictive models.
Publications
-
Behavioural immune landscapes of inflammationCrainiciuc G, Palomino-Segura M, Molina-Moreno M, Sicilia J, Aragones DG, Li JLY, Madurga R, Adrover JM, Aroca-Crevillén A, Martin-Salamanca S, Del Valle AS, Castillo SD, Welch HCE, Soehnlein O, Graupera M, Sánchez-Cabo F, Zarbock A, Smithgall TE, Di Pilato M, Mempel TR, Tharaux PL, González SF, Ayuso-Sacido A, Ng LG, Calvo GF, González-Díaz I, Díaz-de-María F, Hidalgo A.Nature 601, 415-421 (2022)
-
The shape of cancer relapse: Topological data analysis predicts recurrence in paediatric acute lymphoblastic leukaemiaS. Chulián, B. J. Stolz, A. Martínez-Rubio, C. Blázquez-Goñi, J. F. Rodríguez, T. Caballero, A. Molinos, M. Ramírez-Orellana, A. Castillo, J. L. Fuster, A. Minguela, M. V. Martínez, M. Rosa, V. M. Pérez-García, H. Byrne(submitted, 2022)
-
Evolutionary dynamics at the tumor edge reveals metabolic imaging biomarkersJ. Jiménez-Sánchez, J.J. Bosque, G.A. Jiménez-Londoño, D. Molina-García, A. Martínez-Rubio, J. Pérez-Beteta, C. Ortega-Sabater, A.F Honguero-Martínez, A.M. García-Vicente, G.F. Calvo, V.M. Pérez-GarcíaProceedings of the National Academy of Sciences (USA) 118(6) e2018110118 (2021).
-
Brain Metastasis Response to Stereotactic Radio Surgery: A Mathematical ApproachO. León-Triana, J. Pérez-Beteta, D. Albillo, A. Ortiz de Mendivil, L.A. Pérez-Romasanta, E. González del Portillo, M. Llorente, N. Carballo, E. Arana, V.M. Pérez-GarcíaMathematics 9(7) 716 (2021)
-
High-dimensional Analysis of Single-cell Flow Cytometry Data Predicts Relapse in Childhood Acute Lymphoblastic LeukemiaS. Chulián, A. Martínez-Rubio, V.M. Pérez-García, M. Rosa, C. Blázquez-Goñi, J.F. Rodríguez Gutiérrez, L. Hermosín-Ramos, A. Molinos-Quintana, T. Caballero-Velázquez, M. Ramírez-Orellana, A. Castillo Robleda, J.L Fernández-MartínezCancers 13(1), 17 (2021).
-
Tumor width on T1-weighted MRI images of glioblastoma as a prognostic biomarker: A mathematical modelJ. Pérez Beteta, J. Belmonte-Beitia, V.M. Pérez-GarcíaMathematical Modelling of Natural Phenomena 15, 10 (2020)
-
Universal scaling laws rule explosive growth in human cancersV.M. Pérez-García, G.F. Calvo, J.J. Bosque, O. León-Triana, J. Jiménez-Sánchez, J. Pérez-Beteta, J. Belmonte-Beitia, M. Valiente, L. Zhu, P. García-Gómez, P. Sánchez-Gómez, E. Hernández, R. Hortigüela, Y. Azimzade, D. Molina-García, A.Martínez-Rubio, A. Acosta, A. Ortiz de Mendivil, F. Vallette, P. Schucht, M. Murek, M.Pérez-Cano, D.Albillo, AF Honguero, G.A. Jiménez, E. Arana, AM García-VicenteNature Physics 16, 1232-1237 (2020)
-
Approaching the Rank Aggregation Problem by Local Search-based Metaheuristics.J.A. Aledo, J.A. Gámez, D. Molina.Journal of Computational and Applied Mathematics 354, 445-456 (2019)
-
Prognostic models based on imaging findings in glioblastoma: Human versus MachineD. Molina-García, L. Vera, J. Pérez-Beteta, E. Arana, V.M. Pérez-GarcíaScientific Reports 9:5982 (2019)
-
Lack of robustness of textural measures obtained from 3D brain tumor MRIs impose a need for standardizationD. Molina, J. Pérez-Beteta, A. Martínez-González, J. Martino, C. Velasquez, E. Arana, V.M. Pérez-GarcíaPLoS One 12(6):e0178843 (2017)
-
Recommendations for computation of textural measures obtained from 3D brain tumor MRIs: A robustness analysis points out the need for standardizationD. Molina, J. Pérez-Beteta, A. Martínez-González, C. Velásquez, J. Martino, B. Luque, A. Revert, I. Herruzo, E. Arana, V.M. Pérez-GarcíaNeuro-Oncology 19 (3): iii44 (2017)
-
Towards individualized survival prediction in glioblastoma patients using machine learning methodsL. Vera, J. Pérez-Beteta, D. Molina, J.M. Borrás, M. Benavides, J.A. Barcia, C. Velásquez, D. Albillo, P. Lara, V.M. Pérez-GarcíaNeuro-Oncology 19(3):iii84-iii84 (2017)
-
Influence of grey level and space discretization on brain tumor heterogeneity measures obtained from MRIsD. Molina, J. Pérez-Beteta, A. Martínez-González, J. Martino, C. Velasquez, E. Arana, V.M. Pérez-GarcíaComputers in Biology and Medicine 78, 49-57 (2016)
Projects
-
James S. Mc Donnell Foundation (USA) (2015 - 2016)
-
James S. Mc. Donnell Foundation (USA) (2018 - 2021)
-
James S. Mc. Donnell Foundation (USA) (2015 - 2018)
-
FECYT: Fundación Española para la Ciencia y la Tecnología (2018 - 2020)
-
Ministerio de Economía y Competitividad (2016 - 2019)
-
Ministerio de Ciencia e Innovación (Spain) (2020 - 2023)
-
Junta de Andalucía (2020 - 2023)
Members
- Luis Vera Ramírez
- Carlos Velásquez Rodríguez
- Philippe Schucht
- María Rosa Durán
- Victor M. Pérez García
- Julián Pérez Beteta
- David Molina García
- Álvaro Martínez Rubio
- Alicia Martínez González
- Juan Jiménez Sánchez
- Gabriel Fernández Calvo
- Salvador Chulián García
- Jesús Bosque Martínez
- Juan Belmonte Beitia
- Estanislao Arana Fernández de Moya
- David G. Aragonés González
- José David Albillo Labarra